Abstract

In this paper, we develop the lower–upper-bound approximation in the space of Laplace transforms for pricing American options. We construct tight lower and upper bounds for the price of a finite-maturity American option when the underlying stock is modeled by a large class of stochastic processes, e.g. a time-homogeneous diffusion process and a jump diffusion process. The novelty of the method is to first take the Laplace transform of the price of the corresponding “capped (barrier) option” with respect to the time to maturity, and then carry out optimization procedures in the Laplace space. Finally, we numerically invert the Laplace transforms to obtain the lower bound of the price of the American option and further utilize the early exercise premium representation in the Laplace space to obtain the upper bound. Numerical examples are conducted to compare the method with a variety of existing methods in the literature as benchmark to demonstrate the accuracy and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.