Abstract

Over the last 3 years, there has been a growing interest in the development of a new class of fast scintillators such as LaCl 3:Ce and LaBr 3:Ce. Their superior energy resolution is opening an easier way to improve spatial resolution. In this paper we present the results obtained from the first LaBr 3:Ce small gamma camera. It is based on continuous 50×50 mm 2 crystal, 5 mm thick, integral assembled with a Hamamatsu Flat panel PMT. This detector configuration permits the narrowest light distribution with the highest light output in order to obtain the best spatial and energy resolution values, respectively. At the same time, 5 mm crystal thickness carries out 80% efficiency at 140 keV photon energy. Measurements of spatial resolution are also compared with the analogous ones obtained from another 50×50 mm 2 LaBr 3:Ce crystal, assembled with a 3 mm glass optical window. Energy resolution values have been furtherly compared with ones obtained from a LaBr 3:Ce 1 in. diameter and thickness optimized for spectrometric measurements. The first LaBr 3:Ce gamma camera shows excellent intrinsic spatial resolution values such as 0.9 mm, with a best energy resolution value of 6.5% at 140 keV photon energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call