Abstract

Lanthanum hydroxide nanorods were employed as both a template and catalyst for carbon synthesis by chemical vapor deposition. The resulting carbon possesses hollow nanorod shapes with graphitic walls. The hollow carbon nanorods were interconnected at some junctions forming a mazelike network, and the broken ends of the tubular carbon provide accessibility to the inner surface of the carbon, resulting in a surface area of 771 m2/g. The hollow carbon was tested as an electrode material for supercapacitors. A specific capacitance of 128 F/g, an energy density of 55 Wh/kg, and a power density of 1700 W/kg at 1 A/g were obtained using the ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as the electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.