Abstract

Converging lines of evidence suggest that lanthanum tends to deposit in bone. The influence of lanthanum ion (La3+) on osteoblast differentiation and the related mechanism are essential to understanding its effect on bone metabolism. In this study, La3+ treatment enhanced in vitro osteoblast differentiation as evidenced by promoting alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and matrix mineralization. The expressions of osteoblast-specific genes of Cbfa-1, osteopontin (OPN), and bone sialoprotein (BSP) were all increased in the presence of La3+, but no change was observed in that of type I collagen (COL-I). Further studies demonstrated that La3+ treatment enhanced phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of ERK activation by U0126 suppressed the effects of La3+ on osteoblast activity. Moreover, pretreatment of the cells with pertussis toxin (PTx), a Gi protein inhibitor, suppressed the La3+-enhanced ERK phosphorylation and osteoblast differentiation. These findings suggest that La3+ exposure enhances in vitro osteoblast differentiation and the effect depends on ERK phosphorylation via PTx-sensitive Gi protein signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.