Abstract
In this study, lanthanum-doped magnetic biochar (LaMBC) was synthesized from bagasse by co-doping iron salt and lanthanum salt, and it was characterized for its application in the activation of persulfate (PS) in the degradation of Florfenicol (FLO). The results indicated that the LaMBC/PS system consistently achieved a degradation efficiency of over 99.5 %, with a reaction rate constant 4.71 times as that of MBC. The mechanism of FLO degradation suggested that O2•- and •OH played dominant roles, contributing 40.92 % and 36.96 %, respectively, during FLO degradation. Through physicochemical characterization and quenching experiments, it can be concluded that the key reasons for the enhancement of MBC activation performance are as follows: (1) Lanthanum doping in magnetized biochar increased the Fe(II) content in MBC. (2) Lanthanum doping significantly improved the adsorption capacity of LaMBC, increased the concentration of pollutants on the catalyst surface and effectively enhancing the reaction rate. (3) Lanthanum doping effectively increased the surface Fe(II) content during the reaction process in LaMBC, promoted the generation of active oxygen species in PS. This study delves into synthesizing and applying LaMBC for PS activation and FLO removal. The emphasis is on comprehensively characterizing and experimenting to elucidate the mechanism, proposing an innovative approach for efficiently degrading antibiotic wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.