Abstract

This article analyzes the lanthanum, cerium, samarium, europium, terbium, ytterbium, lutetium, uranium, and thorium content in humic acids within soil and paleosol surface horizons from the southern steppe in the Southern Urals. Research demonstrates similar accumulation levels of these elements in paleosols isolated from both the active medium between 3.6 and 3.3 thousand years ago and in recent background soils. Despite the lack of significant differences, research has shown a growing content among the rarest metals in the series “the buried paleosols–man-modified paleosols of settlement–recent background soils”. Research has detected the lowest content of La, Ce, Sm, Eu, Yb, Lu, and Th in preparations of humic acids of recent background soils. This reveals a close content to most elements in humic acids of paleosols buried under barrows and ancient settlement paleosols. Additionally, it indicates the virtual absence of anthropogenic impact on binding lanthanides and actinides by humic acids in ancient times. The contribution of humic acids into the common pool for each element was evaluated using a special approach. Research showed that there was less than half the share of elements associated by humic acids of paleosols than in the recent background chernozems in the total pool of lanthanides and actinides. This article considers the prospects of using humic acids of recent and ancient soils in identifying behavioral patterns of metal complexes through time.

Highlights

  • Humic acids (HAs) are natural substances that perform several functions in the biosphere, most notably acting as stabilizing forces [1,2]

  • To represent the share of lanthanides and actinides associated with humic acids in the total gross content of elements in recent soils and paleosols within the investigated local forest-steppe typical site, it is necessary to consider three problems:

  • The content of lanthanides and actinides in the soil mass marked above natural objects

Read more

Summary

Introduction

Humic acids (HAs) are natural substances that perform several functions in the biosphere, most notably acting as stabilizing forces [1,2]. The growth of productive human activity had led to an increase in biosphere pollution through toxic elements; humic acids can neutralize toxic effects on organisms and ecosystems as a whole. This is due to HA’s ability to accumulate, deposit, and store carbon, along with a wide range of trace elements for long geological periods, as well as the ability to inhibit chemical compounds that are toxic to living organisms. The content of their structure-forming elements varies per the following ranges (wt %): carbon between 50 and 62; hydrogen between 2.8 and 6.0; oxygen between 31 and 40; and nitrogen between two and six

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call