Abstract

Accurate, noninvasive, and self‐referenced temperature measurements at the submicrometer scale are of great interest, prompted by the ever‐growing demands in the fields of nanotechnology and nanomedicine. The thermal dependence of the phosphor's luminescence provides high detection sensitivity and spatial resolution with short acquisition times in, e.g., biological fluids, strong electromagnetic fields, and fast‐moving objects. Here, it is shown that nanoparticles of [(Tb0.914Eu0.086)2(PDA)3(H2O)]·2H2O (PDA = 1,4‐phenylenediacetic acid), the first lanthanide–organic framework prepared by the spray‐drying method, are excellent nanothermometers operating in the solid state in the 10–325 K range (quantum yield of 0.25 at 370 nm, at room temperature). Intriguingly, this system is the most sensitive cryogenic nanothermometer reported so far, combining high sensitivity (up to 5.96 ± 0.04% K−1 at 25 K), reproducibility (in excess of 99%), and low‐temperature uncertainty (0.02 K at 25 K).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.