Abstract

The samples on the basis of Ln2Ti2O7 and Ln4Ti9O24 lanthanide titanates were obtained by compacting-sintering and melting-crystallization processes. The substances as such are promising as immobilizing matrices for the rare earth-actinide fraction of wastes of the treatment of used nuclear fuel. The content of simulators of the rare earth-actinide fraction in the obtained phases was as high as 50 mass % or more. The phases were characterized by a narrow range of variations of their composition. The admixtures of zirconium and aluminum caused the formation of zirconolite; the excess of titanium resulted in the formation of rutile or rhombic titanate (in the cases of Ln4Ti9O24 and Ln2Ti2O7, respectively). The use of these crystalline matrices for immobilization of long-lived radionuclides should provide a considerable decrease in the volume of solidified radioactive wastes to be disposed in deep-seated storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.