Abstract

Single-molecule magnets (SMMs) show wide potential applications in the field of ultrahigh-density storage materials, quantum computing, spintronics, and so on. Lanthanide (Ln) SMMs, as an important category of SMMs, open up a promising prospect due to their large magnetic moments and huge magnetic anisotropy. However, the construction of high performance for Ln SMMs remains an enormous challenge. Although remarkable advances are focused on the topic of Ln SMMs, the research on Ln SMMs with different nuclear numbers is still deficient. Therefore, this review summarizes the design strategies for the construction of Ln SMMs, as well as the metal skeleton types. Furthermore, we collect reported Ln SMMs with mononuclearity, dinuclearity, and multinuclearity (three or more Ln spin centers) and the SMM properties including energy barrier (Ueff ) and pre-exponential factor (τ0 ) are described. Finally, Ln SMMs with low-nuclearity SMMs, especially for single-ion magnets (SIMs), are highlighted to understand the correlations between structures and magnetic behavior of the detail SMM properties are described. We expect the review can shed light on the future developments of high-performance Ln SMMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.