Abstract

It has been suggested previously that La3+ can replace Na+ on various cotransport systems in renal brush border membranes. In the present study, we used rabbit renal brush border membrane vesicles to examine the specificity and kinetics of Ln3+/proline cotransport. Experiments were carried out under zero-trans, voltage clamped conditions using a rapid-mix/filtration technique. Initial experiments confirmed that La3+ produced the classical overshoot phenomenon. The initial rates of proline uptake relative to Na+ were Eu3+, Tb3+, Nd3+, Pr3+, Ho3+ (3.3)>Na+ (1.0)>La3+ (0.86) > choline+ (0.1). At a saturating salt concentration, uptake saturated with increasing proline concentration: theK t andJ max were 0.05mm and 17 pmol mg−1 sec−1 in Na+; and 0.28mm and 73 pmol mg−1 sec−1 in Tb3+. The higherJ max in Tb3+ indicates that the Tb3+-proline loaded carrier is more effective than the Na+-proline loaded carrier in overcoming some rate-limiting barriers in the transport process. Na+ activated proline uptake with a Hill coefficient of 1.6 and aK 0.5 of 21mm, while Tb3+ activated with a Hill coefficient of 0.88 and aK 0.5 of 28mm. The Hill coefficient for Na+ suggests two binding sites, whereas the Hill coefficient for Tb3+ may indicate negative cooperativity between the trivalent ligands at the binding sites. We conclude that lanthanides are able to substitute for Na+ on the brush border proline carrier and that the lanthanides may serve as useful probes for the ligand binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call