Abstract

Emphasis was recently placed on the Cs2AgBiBr6 double perovskite as a possible candidate to substitute toxic lead in metal halide perovskites. However, its poor light-emissive features currently make it unsuitable for solid-state lighting. Lanthanide doping is an established strategy to implement luminescence in poorly emissive materials, with the additional advantage of fine-tuning the emission wavelength. We discuss here the impact of Eu and Yb doping on the optical properties of Cs2AgBiBr6 thin films, obtained from the solution processing of hydrothermally synthesized bulk crystalline powders, by combining experiments and density functional theory calculations. Eu(III) incorporation does not lead to the characteristic 5D0 → 7F2 emission feature at 2 eV, while only a weak trap-assisted sub-band gap radiative emission is reported. Oppositely, we demonstrate that incorporated Yb(III) leads to an intense and exclusive photoluminescence emission in the near-infrared as a result of the efficient sensitization of the lanthanide 2F5/2 → 2F7/2 transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.