Abstract

Light in the near-infrared (NIR) spectral region is increasingly utilized in bioapplications, providing deeper penetration in biological tissues owing to the lower absorption and scattering in comparison with light in the visible range. Lanthanide-doped luminescent nanoparticles with excitation and/or emission in the NIR range have recently attracted tremendous attention as one of the prime candidates for noninvasive biological applications due to their unique optical properties, such as large Stokes shift, spectrally sharp luminescence emissions, long luminescence lifetimes, and excellent photostability. Herein, recent advances of lanthanide-doped nanoparticles with NIR upconversion or downshifting luminescence and their uses in cutting-edge biophotonic applications are presented. A set of efficient strategies for overcoming the fundamental limit of low luminescence brightness of lanthanide-doped nanoparticles is introduced. An in-depth literature review of their state-of-art biophotonics applications is also included, showing their superiority for high-resolution imaging, single-nanoparticle-level detection, and efficacy for tissue-penetrating diagnostics and therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.