Abstract

Ligands containing the [2,6-bis(1,2,3-triazol-4-yl)pyridine] (btp) motif have recently shown promise in coordination chemistry. The motif is synthesized via the Cu(I)-catalyzed "click" reaction and can be conveniently functionalized when compared to other terdentate chelating motifs. Ligand 1 was synthesized and shown to sensitize Eu(III) and Tb(III) excited states effectively. The use of these ions to synthesize self-assembly structures in solution was investigated by carrying out both (1)H NMR and photophysical titrations. The latter were used to determine high binding constants from changes in the absorption, ligand emission (fluorescence), and lanthanide-centered emission. A small library of amino acid derivatives of 1, ligands 3, were prepared upon coupling reactions with Gly, Ala, Phe, and Trp methyl esters, with a view to introducing biologically relevant and chiral moieties into such ligands. All of these derivatives were shown to form stable, emissive Ln(III) self-assemblies, emitting in the millisecond time range, which were studied by means of probing their photophysical properties in organic solutions using lanthanide ion titrations. All the Tb(III) complexes, with the exception of Trp based derivatives, gave rise to highly luminescent and bright complexes, with quantum yields of Tb(III) emission of 46-70% in CH3CN solution. In contrast, the Eu(III) complexes gave rise to more modest quantum yields of 0.3-3%, reflecting better energy match for the Tb(III) complexes, and hence, more efficient sensitization, as demonstrated by using low temperature measurements to determine the triplet state of 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call