Abstract

Twelve lanthanide coordination polymers associated with the organic ligand 5-(2′-carboxylphenyl) nicotinic acid (H2cpna): {[Ln(Hcpna)(cpna)(phen)]·H2O}n (Ln = Sm (1), Tb (2), Ho (3), phen = 1,10-phenanthroline), {[Sm(Hcpna)(cpna)(phen)]·2H2O}n (4), {[Ln2(cpna)3(H2O)3]·4H2O}n (Ln = Y (5), Tb(6), Dy (7), Ho (8)), [Lu2(cpna)3(H2O)2]n (9), {[Y2(cpna)3(phen)2(H2O)]·H2O}n (10), and [Ln(cpna)(phen)(NO3)]n (Ln = Tm (11), Lu (12)) have been prepared by hydrothermal methods and structurally characterized. The structure analyses reveal that complexes 1–3 are isostructural and possess unique three-dimensional (3D) frameworks based on the dodecanuclear Sm/Tb/Ho macrocycles. Complex 4 exhibits a one-dimensional (1D) wheel-chain structure, which further builds three-dimensional (3D) supramolecular architecture via O–HN hydrogen-bonding interactions. Complexes 5–8 are also isostructural and display three-dimensional (3D) open frameworks, which possess two types of channels along the a- and b-axis, respectively. Complexes 9 and 10 feature three-dimensional (3D) frameworks and are created from tetranuclear and dinuclear units, respectively. Complexes 11 and 12 are isostructural and demonstrate one-dimensional (1D) double chain structures, which further build three-dimensional (3D) supramolecular architecture via C–H···O hydrogen-bonding. The results show that the pH value of the reaction system, anion, auxiliary ligand and lanthanide contraction play a significant role in determining the structures of the complexes. In addition, the results of luminescent measurements for compounds 2 and 6 in the solid state at room temperature indicate that the different types of structures have a dissimilar influence on their characteristic luminescence. The magnetic properties of compounds 1, 3, 4, 7 and 11 have been investigated. Furthermore, thermal stabilities for 1–12 and the dehydration/hydration properties of compound 6 have also been studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.