Abstract
AbstractIn this microreview we describe the principle of Förster resonance energy transfer (FRET) occurring between closely spaced energy‐donor and ‐acceptor molecules. The theoretical treatment is depicted in relation with the data extractable from spectroscopic measurements. We present the specific case of semiconductor nanocrystals (or quantum dots – QDs) as energy donors in FRET experiments and a particular emphasis is put on the specific advantages of these fluorophores with regard to both their exceptional photophysical properties and their nanoscopic morphology. In a following section, the special attributes of luminescent lanthanide complexes (LLCs) are outlined with illustrations of properties such as their characteristic emission spectra, long‐lived luminescence, and large “Stokes shift”. Finally, the successful combination of LLCs and QDs in FRET experiments is demonstrated, showing the unrivaled benefits of this singular marriage, opening doors for energy transfer at very large distances and excellent sensitivity of detection within the frame of time‐resolved fluoroimmunoassays.(© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.