Abstract

In this research, typical organic/inorganic photothermal therapy (PTT) agents were designed with a combination of upconversion luminescent (UCL) or near-infrared (NIR) II imaging rare-earth nanomaterials for photo-acoustic (PA)/UCL/NIR II imaging-guided PTT under NIR laser irradiation. The results show the following: (1) The PTT effect mainly comes from NIR absorption and partly from UCL light conversion. (2) Visible UCL emission is mainly quenched by NIR absorption of the coated PTT agent and partly quenched by visible absorption, indicating that excitation may play a more important role than in the UCL emission process. (3) The biostability of the composite might be decided by the synthesis reaction temperature. Among the five inorganic/organic nanocomposites, UCNP@MnO2 is the most suitable candidate for cancer diagnosis and treatment because of its stimuli-response ability to the micro-acid environment of tumor cells and highest biostability. The composites generate heat for PTT after entering the tumor cells, and then, the visible light emission gradually regains as MnO2 is reduced to colorless Mn2+ ions, thereby illuminating the cancer cells after the therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.