Abstract
The novel sulfonate-carboxylate ligand of 5,7-disulfonate-1,4-naphthalenedicarboxylic acid (H4-DSNPDC) was synthesized, and its series of lanthanide compounds {[Ln3(μ2-OH)(DSNPDC)2(H2O)x]·yH2O}n (JXNU-7; Ln = La3+, x = 10. y = 4; Ln = Nd3+, Sm3+ Eu3+, x = 9, y = 2) and {[Ln4(μ3-OH)4(DSNPDC)2(H2O)11]·28H2O}n (JXNU-8; Ln = Eu3+, Gd3+) are presented. JXNU-7 is a three-dimensional structure based on linear trinuclear Ln3 building units, while JXNU-8 has a two-dimensional layer constructed from tetranuclear Ln4(μ3-OH)4 building units. The representative Eu compounds of JXNU-7 and -8 show good proton conductive properties under high humidity. The hydrophilic sulfonate groups pointing to the pores and the water molecules included in the pores mainly contribute to the high proton conductivity for the materials. The presence of one-dimensional infinite hydrogen-bonded networks in channels of JXNU-7(Eu) facilitates a fast and efficient proton transfer, resulting in higher proton conductivity in comparison to that of JXNU-8(Eu). Additionally, JXNU-7(Eu) with a characteristic red emission exhibits a promising potential for selective sensing of Fe3+ ions in aqueous solution. Our work demonstrates the integration of functional organic components (sulfonate groups) and inorganic components (lanthanide centers) in MOFs for the successful preparation of multifunctional MOF materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.