Abstract

We have developed a method, termed laser-activated nano-thermolysis as a cell elimination technology (LANTCET), for the selective detection and destruction of individual tumor cells by the generation of intracellular photothermal bubbles around clusters of gold nanoparticles. Bare nanoparticles and their conjugates to C225 tumor-specific monoclonal antibodies were applied in vitro to C225-positive squamous carcinoma cells and in vivo to an experimental tumor in a rat in order to form intracellular clusters of nanoparticles. Single 10 ns laser pulses generated intracellular photothermal microbubbles at a near-infrared and visible wavelengths. The cells with the clusters yielded an almost 100-fold decrease in the laser fluence threshold for bubble generation and cell damage relative to that for the cells without clusters. Cell damage had a mechanical origin and single cell selectivity. Three LANTCET processes (cell detection, damage and optical guidance) were realized as a microsecond sequence and with the one device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call