Abstract
Computational methods have become widespread in the social sciences, but probabilistic language models remain relatively underused. We introduce language models to a general social science readership. First, we offer an accessible explanation of language models, detailing how they estimate the probability of a piece of language, such as a word or sentence, on the basis of the linguistic context. Second, we apply language models in an illustrative analysis to demonstrate the mechanics of using these models in social science research. The example application uses language models to classify names in a large administrative database; the classifications are then used to measure a sociologically important phenomenon: the spatial variation of religiosity. This application highlights several advantages of language models, including their effectiveness in classifying text that contains variation around the base structures, as is often the case with localized naming conventions and dialects. We conclude by discussing language models’ potential to contribute to sociological research beyond classification through their ability to generate language.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.