Abstract

Consider a system of language equations of the form X i = φ i ( X 1 , … , X n ) ( 1 ⩽ i ⩽ n ) , where every φ i may contain the operations of concatenation and complementation. These systems have been studied in “Language equations with complementation: Decision problems” [A. Okhotin, O. Yakimova, Theoretical Computer Science 376 (2007) 112–126]. This paper investigates the family of languages representable by unique solutions of such systems. A method for proving nonrepresentability of particular languages is developed. Several natural subfamilies of this family are compared to each other and to the main known families of formal languages. Their position in the hierarchy is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.