Abstract

BackgroundPreterm (PT) children show early cognitive and language deficits and display altered cortical connectivity for language compared to term (T) children. Developmentally, functional connectivity networks become more segregated and integrated, through the weakening of short-range and strengthening of long-range connections.MethodsLongitudinal intrinsic connectivity distribution (ICD) values were assessed in PT (n = 13) compared to T children (n = 12) at ages 8 vs. 16 using a Linear Mixed Effects model. Connectivity values in regions generated by the group × age interaction analysis were then correlated to scores on full IQ (FSIQ), verbal IQ (VIQ), verbal comprehension IQ (VCIQ), performance IQ (PIQ), Peabody picture vocabulary test—revised (PPVT­R), and Rapid Naming Composite (RDRL_Cmp).ResultsNine regions were generated by the group × age interaction analysis. PT connectivity significantly increased over time in all but two regions, and they ultimately displayed greater relative connectivity at age 16 than Ts in all areas except the left occipito-temporal cortex (OTC). PTs underwent significant connectivity reductions in the left OTC, which corresponded with worse performance on FSIQ, VIQ, and PIQ. These findings differed from Ts, who did not undergo any significant changes in connectivity over time.ConclusionsThese findings suggest that the developmental alterations in connectivity in PT children at adolescence are both pervasive and widespread. The persistent and worsening cognitive and language deficits noted in the PT subjects may be attributed to the loss of connections in the left OTC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call