Abstract

Scientific software used on high performance computing platforms is in a phase of transformation because of combined increase in the heterogeneity and complexity of models and hardware platforms. Having separate implementations for different platforms can easily lead to combinatorial explosion, therefore, computational science community has been looking for mechanisms to express code through abstractions that can be specialized for different platforms. Some approaches have met success through the use of template meta-programming in C++. However, their reliance upon C++ makes these approaches inaccessible to non C++ codes. In this paper, we describe a language agnostic methodology using macros that not only mimics the behavior of templates as applied in the abstractions, but also allows the use of code components as building blocks to explore implementation variants. We have successfully applied this methodology to Flash-X, a new multiphysics multicomponent code with many Fortran legacy components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.