Abstract

Charged particle acceleration takes place ubiquitously in the Universe including the near-Earth heliospheric environment. Typical in situ spacecraft measurements made in the solar wind show that the charged particle velocity distribution contains energetic components with quasi scale-free power-law velocity dependence, f∼v −α, for high velocity range. In this Review a theory of quiet-time solar-wind electrons that contain a suprathermal component is discussed, in which these electrons are taken to be in dynamical equilibrium with Langmuir turbulence. This Review includes an overview of the Langmuir turbulence theory, as well as a discussion on asymptotic equilibrium solution of Langmuir turbulence/suprathermal electron system. Theoretical predictions of high-energy electron velocity power-law distribution index is then compared against the recent observations of the superhalo electron velocity distribution made by instruments onboard WIND and STEREO spacecraft. It is shown that the theoretical prediction of velocity power-law index is intermediate to the observed range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.