Abstract

The relationship between the physicochemical properties of asphaltenes and asphaltene structure is an issue of increasing focus. Surface pressure-area isotherms of asphaltene model compounds have been investigated to gain more knowledge of their arrangement at an aqueous surface. Variations in interfacial activity have been correlated to proposed arrangements. The presence of a carboxylic acid has shown to be crucial for their interfacial activity and film properties. The acid group directs the molecules normal to the surface, forming a stable monolayer film. The high stability was absent when no acidic groups were present. Fluorescence spectra of deposited Langmuir-Blodgett films showed only the presence of the excimer emission for thin films of acidic model compounds, indicating a close face-to-face arrangement of the molecules. Time-correlated single photon counting (TCSPC) of the model compounds in toluene indicated the presence of aggregates for two of four compounds at low concentrations. However, a sudden drop of interfacial tension observed could not be correlated to the aggregation. Instead, aggregation induced by addition of a "poor" solvent showed decreased interfacial activity when aggregated due to decrease of monomers in bulk. The findings regarding these asphaltene model compounds and their structural differences show the great effect an acidic group has on their physicochemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call