Abstract
The electrochemical production of H2O2 via the two-electron oxygen-reduction reaction (2e- ORR) has been actively studied using systems with atomically dispersed metal-nitrogen-carbon (M-N-C) structures. However, the development of well-defined M-N-C structures that restrict the migration and agglomeration of single-metal sites remains elusive. Herein, we demonstrate a Langmuir-Blodgett (LB) monolayer of cobalt phthalocyanine (CoPc) on monolayer graphene (LB CoPc/G) as a single-metal catalyst for the 2e- ORR. The as-prepared CoPc LB monolayer has a β-form crystalline structure with a lattice space for the facile adsorption of oxygen molecules on the cobalt active sites. The CoPc LB monolayer system provides highly exposed Co atoms in a well-defined structure without agglomeration, resulting in significantly improved catalytic activity, which is manifested by a very high H2O2 production rate per catalyst (31.04 mol gcat-1 h-1) and TOF (36.5 s-1) with constant production stability for 24 hours. To the best of our knowledge, the CoPc LB monolayer system exhibits the highest H2O2 production rate per active site. This fundamental study suggests that an LB monolayer of molecules with single-metal atoms as a well-defined structure works for single-atom catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.