Abstract
We present the synthesis as well as the structural and electronic properties of an amphiphilic derivative of hexaalkylhexa-peri-hexabenzocoronene (HBC), which contains one alkyl substituent that is terminated with a carboxylic acid group. The molecules form well-defined Langmuir films when spread from a solution at the air-water interface. Grazing-incidence X-ray diffraction (GIXD) and X-ray reflectivity studies of the Langmuir monolayer reveal two crystallographic phases at room temperature which depend on the surface pressure applied to the film. Scattering from very well-ordered (zeta = 200-400 A) pi-stacked lamellae of HBC molecules tilted approximately 45 degrees relative to the surface normal is observed in the low-pressure phase. In this phase, the HBC molecules pack in a rectangular two-dimensional unit cell with a = 22.95 A and b = 4.94 A. In the high-pressure phase, coherence from the pi stack is lost. This is a consequence of stress induced by the crystallization of the substituent alkyl chains into a hexagonal lattice, which has a trimerized superstructure in one direction: a = 3 x b = 15.78 A, b = 5.26 A, gamma = 120 degrees, A = 71.9 A2 = 3 x 23.9 A2. Thin monolayer films can be transferred to solid supports by the Langmuir-Blodgett (LB) technique. Atomic force microscopy (AFM) with atomic resolution reveals the crystalline packing of alkyl chains in the high-pressure phase. Kelvin force microscopy (KFM) shows a clear potential difference between the high- and low-pressure phases. This is discussed in terms of orbital delocalization (band formation) in the highly coherent low-pressure phase, which is in contrast to the localized molecular orbitals present in the high-pressure phase. The highly coherent pi stack is expected to sustain a very high charge-carrier mobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.