Abstract

One of the major achievements of Harish-Chandra was a derivation of the Plancherel formula for real and p-adic groups [9,10]. To have an explicit formula, one will have to compute the measures appearing in the formula; the so called Plancherel measures and formal degrees [12]. (For reasons stemming from L-indistinguishability, we would like to distinguish between the formal degrees for discrete series and the Plancherel measures for non-discrete tempered representations, cf. Proposition 9.3 of [29].) While for real groups the Plancherel measures are completely understood [1, 9, 22], until recently little was known in any generality for p-adic groups [29] (except for their rationality and general form due to Silberger [39]). On the other hand any systematic study of the non-discrete tempered spectrum of a p-adic group would very likely have to follow the path of Knapp and Stein [20, 21] and their theory of 72-groups. Since the basic reducibility theorems for p-adic groups are available [40, 41], it is the knowledge of Plancherel measures which would be necessary to determine the R-groups. This is particularly evident from the important and the fundamental work of Keys [16, 17, 18] and the work of the author [29, 30, 31].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.