Abstract

Lévy walk is a practical model and has wide applications in various fields. Here we focus on the effect of an external constant force on the Lévy walk with the exponent of the power-law-distributed flight time α∈(0,2). We add the term Fη(s) [η(s) is the Lévy noise] on a subordinated Langevin system to characterize such a constant force, as it is effective on the velocity process for all physical time after the subordination. We clearly show the effect of the constant force F on this Langevin system and find this system is like the continuous limit of the collision model. The first moments of velocity processes for these two models are consistent. In particular, based on the velocity correlation function derived from our subordinated Langevin equation, we investigate more interesting statistical quantities, such as the ensemble- and time-averaged mean-squared displacements. Under the influence of constant force, the diffusion of particles becomes faster. Finally, the superballistic diffusion and the nonergodic behavior are verified by the simulations with different α.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call