Abstract

It is well known that Brownian motion can be described using Langevin equation. In this paper we extend the application of the Langevin equation to the Rayleigh-Bénard (RB) flow, assuming that each molecule in the system is a Brownian particle colliding with its surrounding molecules. The phenomenon of thermal instability, changing from a conductive to a convective state, is well reproduced by Langevin dynamics simulations. The roles of the drag force and the random force terms in the Langevin equation in triggering thermal instability are elucidated via numerical tests. Furthermore, we demonstrate that the strength of the fluctuation correlations increases as the Rayleigh number approaches the critical value, and the characteristics of the fluctuation correlations below the onset of instability foreshadow the form of the convective patterns emerging above the critical point. The Langevin equation, together with the form of the fluctuation correlations, sheds new light on the mechanism of the RB instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.