Abstract

We establish a novel correspondence between the spacetime correlators of one-dimensional (1D) N-particle classical stochastic models described by a Langevin equation with that of the ground-state dynamics of a class of integrable 1D interacting many-body quantum models of the supersymmetric elliptic type. We show that these seemingly different concepts of stochastic systems, supersymmetry and quantum integrability can be viewed in a unified framework. Starting with an Lax matrix, we show that row (column) sums driven by a Gaussian noise term may be interpreted as a set of forward (backward) Langevin equations. Then, following functional path integral methods of stochastic quantization, we straightforwardly find an associated supersymmetric 1D quantum Hamiltonian. If, further, the classical stochastic system consists of two-body interactions only and we also want the quantum interactions to be of two-body type, we find that the only class of interactions permissible for the quantum models corresponds to the elliptic models. The algebraic structure that emerges very naturally reproduces the proof of integrability and allows the identification of the ground-state wavefunction of these quantum models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.