Abstract

The Martin-Siggia-Rose generating functional (MSR-GF) technique is used for treating the polymeric D-dimensional-manifold melt dynamics. The one- (test-) manifold dynamics and the collective dynamics are considered separately. The test-manifold dynamics is obtained by integrating out the melt collective variables. This is done within the dynamic random-phase approximation (RPA). The resulting effective-action functional of the test manifold is treated by making use of the self-consistent Hartree approximation. As a consequence, the generalized Rouse equation of the test manifold is derived, and its static and dynamic properties are studied. By making use the MSR-GF technique, the fluctuations around the RPA of the collective variables - mass density and response-field density - are investigated. As a result, the equations for the correlation and response functions are derived. The memory kernel can be specified for the ideal glass transition as a sum of all `water-melon' diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.