Abstract

Lane-level map matching is essential for autonomous driving. In this paper, we propose a Hidden Markov Model (HMM) for matching a trajectory of noisy GPS measurements to the road lanes in which the vehicle records its positions. To our knowledge, this is the first time that HMM is used for lane-level map matching. Apart from GPS values, the model is further assisted by yaw rate data (converted to a lane change indicator signal) and visual cues in the form of the left and right lane marking types (dashed, solid, etc.). Having defined expressions for the HMM emission and transition probabilities, we evaluate our model to demonstrate that it achieves 95.1% recall and 3.3% median path length error for motorway trajectories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.