Abstract
The behavior prediction of the surrounding vehicles is crucial when planning a minimal-risk path when realizing a collision-avoidance system. Herein, we propose a multiple model–based adaptive estimator (MMAE) that infers the lane-change intention of the surrounding vehicles and then predicts their trajectories. Specifically, first, a path is generated in the form of a cubic spline curve using the Frenet coordinate system, which is robust to changes in road curvatures. Linearized recursive least-squares estimation (LRLSE) method is used to adaptively predict a future trajectory based on the past trajectory of the target vehicle. Preview time is defined as a time-varying parameter that determines the final point of the path, and LRLSE updates it in real time. The MMAE applies LRLSEs to multiple paths and obtains the mode probability for each path, then the lane-change intention is inferred using the mode probability and preview time. The predicted future trajectory is the cubic spline curve determined based on the preview time. Further, we verify the performance of our approach using highD, a naturalistic dataset of vehicle trajectories, and compare it with those of existing methods. The proposed method does not require a large amount of data for training and has a low computational burden and high real-time performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.