Abstract
The Italian territory is subject to a high level of hydrogeological instability that periodically results in the loss of lives, buildings and productive activities. Therefore, the recognition of areas susceptible to hydrogeological instability is the basis for preparing countermeasures. In this context, landslide susceptibility in the mid-Adriatic slope was analyzed using a statistical method, the weight of evidence (WoE), which uses information from several independent sources to provide sufficient evidence to predict possible system developments. Only flows, slides, debris flows and mud flows were considered, with a total of 14,927 landslides obtained from the IFFI (Inventory of Franous Phenomena in Italy) database. Seven climatic–environmental factors were used for mapping landslide susceptibility in the study area: slope, aspect, extreme precipitation, normalized difference vegetation index (NDVI), CORINE land cover (CLC), and topographic wetness index (TWI). The introduction of these factors into the model resulted in rasters that allowed calculation by GIS-type software of a susceptibility map. The result was validated by the ROC curve method, using a group of landslides, equal to 20% of the total, not used in the modeling. The performance of the model, i.e., the ability to predict the presence or absence of a landslide movement correctly, was 0.75, indicating a moderately accurate model, which nevertheless appears innovative for two reasons: the first is that it analyzes an inhomogeneous area of more than 9000 km2, which is very large compared to similar analyses, and the second reason is the causal factors used, which have high weights for some classes despite the heterogeneity of the area. This research has enabled the simultaneous introduction of unconventional factors for landslide susceptibility analysis, which, however, could be successfully used at larger scales in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.