Abstract
Loess areas have a unique geological environment, and geological disasters occur there frequently. In this work, the typical loess area Lvliang was used as the study area. Using the historical landslide catalog, 12 influencing factors were chosen by integrating multisource heterogeneous spatiotemporal big data such as remote sensing, ground investigation, and basic geography. Based on frequency ratio (FR) and improved TabNet deep learning technology, landslide susceptibility evaluation and uncertainty analysis were performed. The results showed that the TabNet evaluation model using FR and self-supervised learning performs well and has the highest FR in extremely high-prone areas. Compared with other methods, this method has the highest scores in areas under the curve and susceptibility index distribution and the lowest uncertainty. Moreover, the SHAP method was used for interpretability analysis of the model. Therefore, this study can provide new ideas for landslide susceptibility management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.