Abstract

Tree-based gradient boosting (TGB) models gain popularity in various areas due to their powerful prediction ability and fast processing speed. This study aims to compare the landslide spatial prediction performance of TGB models and non-tree-based machine learning (NML) models in Penang Island, Malaysia. Two specific instances of TGB models, eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) and two specific instances of NML models, artificial neural network (ANN) and support vector machine (SVM), are applied to make predictions of landslide susceptibility. Feature selection and oversampling techniques are considered to improve the prediction performance as well. The results are analyzed and discussed mainly based on receiver operating characteristic (ROC) curves as well as the area under the curves (AUC). The results show that TGB models give better prediction performance compared to NML models, no matter what the sample size is. The TGB models’ performances are improved when training with the dataset considering either feature selection or oversampling techniques. The highest AUC value of 0.9525 is obtained from the combination of XGBoost and SMOTE. The landslide susceptibility maps (LSMs) produced by XGBoost and LightGBM can provide valuable information in landslide management and mitigation in Penang Island, Malaysia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call