Abstract

Instability of pit wall slopes is the most critical accident in open pit mining. The risk of damages to pit walls is proportional to the height of exposed surfaces and to the time of exposure. Among many factors governing pit wall stability, the major factor is geological structure and weakening zones in rock mass. Deformation processes are initiated in host rock mass of coal seams mostly because of undercutting of weak interlayers. Alongside with local undercutting, another cause of landslides is transition of coal mining from down-dip extraction to up-dip extraction. The sequence of mining and morphology of weak interlayers also have influence on initiation and evolution of deformations. The basic component of engineering solutions on pit wall stability control is optimization of mining sequence and methods of accessing working horizons in open pit mines. Large-scale deformation of Western and Southeastern pit walls in Urtui mine could be avoided using the optimized sequence of mining operations. For example, mining advance mostly along the curve of the Urtui centroclinal fold, with early access and destress of the eastern and, first of all, western wings of the fold could make it possible to evade from up-dip mining of coal seams and, as a consequence, to solve the major geomechanical problems in the open pit mine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call