Abstract

The Dadu River travels in the mountainous areas of southwestern China, one of regions with the most hazards that has long suffered from frequent geohazards. The early identification of landslides in this region is urgently needed, especially after the recent Luding earthquake (MS 6.8). While conventional ground-based monitoring techniques are limited by the complex terrain conditions in these alpine valley regions, space interferometric synthetic aperture radar (InSAR) provides an incomparable advantage in obtaining surface deformation with high precision and over a wide area, which is very useful for long-term and slow geohazard monitoring. In this study, more than 500 Sentinel-1 SAR images with four frames acquired during 2017~2022 were collected to detect the hidden landslide regions from the Jinchuan to Ebian Section along the Dadu River, based on joint-scatterer InSAR (JS-InSAR) and small baseline subset (SBAS) techniques. The results showed that our method could be successfully applied for landslide monitoring in complex mountainous regions. Furthermore, 143 potential landslide regions spreading over an 800 km area along the Dadu River were extracted by integrating the deformation measurements and optical images. Our study can provide a reference for large-scale geological hazard surveys in mountainous areas, and the InSAR technique will be encouraged for the local government in future long-term monitoring applications in the Dadu River Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call