Abstract

<p> Studies of landslide evolution that improve the knowledge of ground movements are essential to understand the mechanism of deformation for landslide-prone territories to mitigate the associated risk. The large Qingpo landslide, with a volume of about 200,0000 m<sup>3</sup>, is located in a mega ancient landslide (with a width of 1300 m and a height difference about 400 meters), and a pylon is just located on the boundary of Qingpo landslide. How to accurately judge the historical evolution process, current evolution stage and the future evolution trend of the large landslides is very important for landslide and pylon monitoring and early warning. In this study, on the basis of a detailed on-site investigation, a total of 114 Sentinel-1A Images over five years with Level-1 Single Look Complex (SLC) mode and Interferometric Wide (IW) acquisition mode were downloaded from Copernicus Open Access Hub and were preprocessed by time series InSAR model, which allow us to produce deformation time series and mean deformation velocity maps. An automatic monitoring and warning scheme was designed, 10 sets of ground-based sensors, containing self-adapting crack meter, rain gauge, strain gauge and dip meter were installed, followed by real-time monitoring within one month. Ultimately, the temporal and spatial evolution characteristics of the landslide were comprehensively analyzed through on-site deformation investigation, long-term deformation monitoring by InSAR and ground-based real-time monitoring. The applicability of long-term remote sensing monitoring and real-time monitoring methods and how to use them together have also been verified. This study may can also provide a typical case for the comprehensive use of multi-source data.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.