Abstract

AbstractElectronic databases of landslides seldom include the triggering mechanisms, rendering these inventories unusable for landslide hazard modeling. We present a method for classifying the triggering mechanisms of landslides in existing inventories, thus, allowing these inventories to aid in landslide hazard modeling corresponding to the correct event chain. Our method uses various geometric characteristics of landslides as the feature space for the machine‐learning classifier random forest, resulting in accurate and robust classifications of landslide triggers. We applied the method to six landslide inventories spread over the Japanese archipelago in several different tests and training configurations to demonstrate the effectiveness of our approach. We achieved mean accuracy ranging from 67% to 92%. We also provide an illustrative example of a real‐world usage scenario for our method using an additional inventory with unknown ground truth. Furthermore, our feature importance analysis indicates that landslides having identical trigger mechanisms exhibit similar geometric properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.