Abstract

Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20%.

Highlights

  • In recent years, the effect of tree species diversity on forest ecosystem functions has been intensively investigated from local to continental scale (e.g., [1,2,3,4])

  • We found no characteristic species for mixed stands compared to both pure stands except for Pteridium aquilinum in Northwestern Germany (NW)-Germany when compared to pure beech and pine stands

  • With 99.7% of regional diversity, a combination of pure beech and pure pine stands supported almost the total diversity of the three groups that was sampled in Schorfheide-Chorin, whereas a hypothetical forest landscape with 100% mixed stands reduced the maximum diversity by 19.8%

Read more

Summary

Introduction

The effect of tree species diversity on forest ecosystem functions has been intensively investigated from local to continental scale (e.g., [1,2,3,4]). Neighborhood interactions among different tree species in terms of stress release and facilitation have been shown to drive both diversity-productivity (e.g., [9,10]) and diversity-stability relationships [11,12]. This indicates the importance of a distinct intermingling of different tree species at the stand scale to support some key forest ecosystem functions. Tree species mixtures within forest stands are assumed to conserve and promote associated understory biodiversity better than monocultures (e.g., [13,14,15]). Understanding its responses to canopy changes is essential for implementing biodiversity-orientated forest management concepts including the broad promotion of mixed stands instead of monocultures

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call