Abstract

Extraction of oil sands in the relatively dry Western Boreal Plains near Fort McMurray, Alberta, destroys the natural surface cover including fen peatlands that cover upto 65% of the landscape. Industry and environmental monitoring agencies have questioned the ability to reclaim fen peatlands in the post-mine landscape. This study proposes a conceptual model to replace fen systems with fen peat materials supported by groundwater inflow from a constructed watershed. A numerical model is used to determine the optimum system geometry, including the ratio of upland to fen area, thickness and slope of sand materials, and thickness of peat and of the liner that would result in flows that sustain peat wetness to a critical threshold soil water pressure of −100 cm of water at a peat depth of 10 cm. We also test the sensitivity of the system to variations in the value and spatial configuration of the hydraulic conductivity (K) of locally available materials. The optimal conditions were achieved using an upland area at least twice that of the fen, underlain by a sloping (3%) layer of fine-grained material with hydraulic conductivity (K) of 10−10 m/s, that maintains lateral groundwater flow in a sand layer with K of 10−4 to 10−5 m/s. Using daily climate inputs that included 1998, the driest summer on record, the model suggests that adequate wetness can be sustained in the fen for the growing season, and that the extent of water table recession was similar to undisturbed systems during that period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call