Abstract
Structural variations (SV) are large (> 50 bp) genomic rearrangements comprising deletions, duplications, insertions, inversions, and translocations. Studying SVs is important because they play active and critical roles in regulating gene expression, determining disease predispositions, and identifying population-specific differences among individuals of diverse ancestries. However, SV discoveries in the Indian population using whole-genome sequencing (WGS) has been limited. In this study, using short-read WGS having an average 42X depth of coverage, we identify and characterize 36,210 SVs from 529 individuals enrolled in population-based cohorts in India. These SVs include 24,574 deletions, 2913 duplications, 8710 insertions, and 13 inversions. 1.26% (456 out of 36,210) of the identified SVs can potentially impact the coding regions of genes. Furthermore, 56 of these SVs are highly intolerant to loss-of-function changes to the mapped genes, and five SVs impacting ADAMTS17, CCDC40, and RHCE are common in our study individuals. Seven rare SVs significantly impact dosage sensitivity of genes known to be associated with various clinical phenotypes. Most of the SVs in our study are rare and heterozygous. This fine-scale SV discovery in the under-represented Indian population provides valuable insights that extends beyond Euro-centric human genetic studies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.