Abstract

IntroductionB-progenitor acute lymphoblastic leukemia (B-ALLs) accounts for 85% of pediatric ALL and categorized into several molecular subgroups according to their ploidy and recurrent translocations, such as ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL-rearrangements. In addition, recent genetic studies using high-throughput sequencing have disclosed landscapes of gene alterations in each subgroup, however, their clinical relevance have not fully been investigated in a large cohort of B-ALL patients who are uniformly treated and enrolled in an unbiased manner.MethodsWe enrolled a total of 515 pediatric B-ALL patients, who had been uniformly treated according to the Japan Association of Childhood Leukemia Study (JACLS) ALL-02 protocol between 2002 and 2008. These patients were categorized into three risk groups, including standard-, high-, and extremely high-risk. Infantile ALL as well as BCR-ABL1-positive and Down syndrome-associated cases were excluded. A total of 158 known or putative driver genes in pediatric ALL were analyzed for somatic mutations by targeted-capture sequencing. IgH rearrangements were captured using 662 baits tiling the entire IgH enhancer locus. Finally, an additional 1205 baits was also designed to enable sequencing-based genome-wide copy number detection.ResultsThe median age at diagnosis and observation period were 5.2 (1-18.5) and 4.2 (1.8-9) years, respectively. Sixty-six of the 515 patients (13%) had relapsed diseases and 47 patients (9%) had been died. Real-time RT-PCR and conventional cytogenetic analyses revealed subgroup-defining genetic lesions in 368/515 (71%) patients: 117 (23%) cases with ETV6-RUNX1, 48 (9%) with TCF3-PBX1, 13 (3%) with MLL rearrangements, together with those with hyper- (169 [33%]), and hypo- (6 [1%]) diploid. Remaining 162 patients (31%) had none of these abnormalities. The mean depth of the targeted sequencing was 569× across the entire cohort. In total, 823 driver mutations (median 1 per patient, range 0-7) and 954 focal deletions (median 2 per patient, range 0-13) were detected in 483 patients (92%). Among these, most frequently detected were mutations/deletions in CDKN2A (24%), ETV6 (21%), NRAS (18%), KRAS (18%), and PAX5 (15%). IgH-rearrangements were detected in 51 patients, including IGH-DUX4 (26 [5.0%]), IGH-EPOR (3 [0.6%]) and IGH-CRLF2(2 [0.3%]).Genetic alterations were enriched in several functional pathways, of which most frequent was epigenetic regulation (53%), followed by B-cell development (47%), RAS signaling (46%) and cell cycle (40%). A number of novel recurrent genetic lesions were also identified, including those in DOT1L and PHF6. DOT1L encode an H3K79 methyltransferase and was inactivated by frameshift/nonsense mutations and/or deletions in 19 cases. Although frequently found in T-ALL, mutations of PHF6 had not previously been reported in B-ALL but were detected in 14 cases in the current cohort and strongly associated with TCF3-PBX1 translocation.Significant positive correlations were also demonstrated for an additional 10 combinations of common genetic lesions, suggesting functional links between these combinations. Thus, ERG deletions were highly associated with IGH-DUX4 rearrangement, while mutations in KRAS, NRAS, and CREBBP were significantly enriched in hyperdiploid cases. ETV6-RUNX1 fusion also showed positive correlations with alterations in ETV6, CDKN1B, ATF7IP, VPREB1, BTG1, and WHSC1. Furthermore, mutually exclusive relationship between ETV6-RUNX1 translocationsand FLT3mutations were also identified.Finally, we analyzed the prognostic impact of driver mutations. In multivariate analysis of the entire cohort, 4 genetic alterations were significantly associated with poor prognosis (HR [95%CI]): IKZF1 mutations/deletions (2.6 [1.5−4.8]), EBF1 deletions (3.0 [1.4−6.5]), KDM6A mutations/deletions (2.8 [1.2−6.5]), and TP53 mutations (2.7 [1.2−5.9]). Additional factors (q < 0.1) were identified in subgroup analyses, including alterations in ETV6 (5.4 [1.2−24]), CDKN1B (7.4 [1.6−33]) and CDKN2A (4.2 [1.4−12]) in ETV6-RUNX1 ALL, KMT2D (5.9 [1.3−26]) in TCF3-PBX1 ALLand TP53 (38 [4.1−364]) in IGH-DUX4ALL.ConclusionsWe revealed the landscape of genetic lesions in pediatric B-ALL including novel targets of recurrent mutations with clinical relevance of common genetic lesions. Our results should help in the better stratification of patients. DisclosuresOgawa:Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.