Abstract

Human activities have caused different degrees of land-use change on different topographic gradients, with impacts on the landscape and ecosystem. Effectively preventing and addressing ecological risk (ER) and achieving harmonious coexistence between humans and nature are important aspects of sustainable development. In this study, we used Gansu Province as an example, adopted five periods of land-use data in 1980, 1990, 2000, 2010 and 2020, and used the geoinformatic Tupu method and the terrain distribution index to study land-use changes under different topographic gradients, and then constructed the landscape ecological risk assessment (LERA) model based on the landscape pattern index to analyze landscape ecological risk (LER) spatiotemporal changes under different topographic gradients, and finally explored the LER driving factors using the geodetector model. The results showed that (1) the dominant land-use types were unused land and grassland, accounting for approximately 74% of the land. The situation of transferring and changing each type was more drastic. The distribution and changes in cropland and built-up land were easily found in low topographic gradient areas with low elevations and small slopes; the distribution and changes in woodland, grassland and water areas were easily found in high topographic gradient areas with high elevations and large slopes. (2) The landscape ecological risk index (LERI) was 0.018, 0.019, 0.019, 0.019 and 0.020, respectively, with spatial expressions of high in the northwest and low in the southeast. Low LER was concentrated in high topographic gradient ecological reserves; high LER was concentrated in low topographic gradient human interference areas and high topographic gradient natural environmental complex areas. (3) Natural factors mainly acted on the LER on moderate and high topographic position gradients; socioeconomic factors mainly acted on the LER on low topographic position gradients. Human interference interacted with natural factors more than human interference alone on LER. This study can provide a scientific basis for ensuring ecological security and sustainable development in areas with complex topography and geomorphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.