Abstract
Spectral methods include a family of algorithms related to the eigenvectors of certain data-generated matrices. In this work, we are interested in studying the geometric landscape of the eigendecomposition problem in various spectral methods. In particular, we first extend known results regarding the landscape at critical points to larger regions near the critical points in a special case of finding the leading eigenvector of a symmetric matrix. For a more general eigendecomposition problem, inspired by recent findings on the connection between the landscapes of empirical risk and population risk, we then build a novel connection between the landscape of an eigendecomposition problem that uses random measurements and the one that uses the true data matrix. We also apply our theory to a variety of low-rank matrix optimization problems and conduct a series of simulations to illustrate our theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.