Abstract

Landscape connectivity is a multi-scalar concept allowing the investigation of how the interaction between species movement abilities and landscape structure affects species survival, gene flow and other key ecological processes in fragmented landscapes. This requires the determination of functional connectivity which is the end result of a complex combination of multiple factors such as habitat amount and arrangement, matrix quality and permeability, species perceptions and dispersal behaviour, population density, etc. Functional connectivity quantification necessitates also the consideration of the impacts and constraints imposed by the increasing rates of landscape and environmental change, which are ultimately driven by socioeconomic factors and are likely to continue putting more pressures on both managed and natural landscapes. Connectivity is nowadays an important concern in almost any modern conservation plan around the globe. The challenge of these conservation plans is to identify the spatial scale(s) and key landscape elements needed to maintain or restore connectivity and the ecological processes that are promoted by it. To meet the final objective of favouring species viability and ecosystem diversity, landscape ecologists should be able to deliver conservation guidelines and indicators at the spatial scale at which the impacts of landscape change are most prominently affecting the abundance and persistence of the focal species. They also need to convincingly demonstrate the effectiveness and benefits of connectivity investments compared to other competing conservation alternatives. In this context, integrated approaches offering synergies and new capabilities for connectivity conservation planning should allow us to interpret the effects of landscape spatial heterogeneity and to define critical threshold levels at which landscapes are connected allowing the persistence of species (Opdam et al. 2003). The series of papers in this special issue constitute a valuable addition towards this end, by showing how a diversity of analytical approaches and data types can be applied, and in many case combined in an integrated fashion, in order to address various aspects that are at play while quantifying landscape connectivity and to support related management decisions. The contributions from this special issue include (i) empirical assessments of the role of different connectivity-related S. Luque (&) Cemagref, Institute for Agricultural and Environmental Engineering Research, Mountain Ecosystems Research Unit, 2 Rue de la Papeterie, 38402 Saint-Martin d’Heres, France e-mail: sandra.luque@irstea.fr; sandra.luque@cemagref.fr

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call