Abstract

In the coastal region of south-western Victoria, Australia, populations of native small mammal species are restricted to patches of suitable habitat in a highly fragmented landscape. The size and spatial arrangement of these patches is likely to influence both the occupancy and richness of species at a location. Geographic Information System (GIS)-based habitat models of the species richness of native small mammals, and individual species occurrences, were developed to produce maps displaying the spatial configuration of suitable habitat. Models were generated using either generalised linear Poisson regression (for species richness) or logistic regression (for species occurrences) with species richness or presence/absence as the dependent variable and landscape variables, extracted from both GIS data layers and multi-spectral digital imagery, as the predictor variables. A multi-model inference approach based on the Akaike Information Criterion was used and the resulting model was applied in a GIS framework to extrapolate predicted richness/likelihood of occurrence across the entire area of the study. A negative association between species richness and elevation, habitat complexity and sun index indicated that richness within the study area decreases with increasing altitude, vertical vegetation structure and exposure to solar radiation. Landform characteristics were important (to varying degrees) in determining habitat occupancy for all of the species examined, while the influence of habitat complexity was important for only one of the species. Performance of all but one of the models generated using presence/absence data was high, as indicated by the area under the curve of a receiver–operating characteristic plot. The effective conservation of the small mammal species in the area of concern is likely to depend on management actions that promote the protection of the critical habitats identified in the models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.