Abstract

Natural killer (NK) cells are essential in controlling cancer and infection. However, little is known about the dynamics of the transcriptional regulatory machinery during NK cell differentiation. In this study, we applied the assay of transposase accessible chromatin with sequencing (ATAC-seq) technique in a home-developed in vitro NK cell differentiation system. Analysis of ATAC-seq data illustrated two distinct transcription factor (TF) clusters that dynamically regulate NK cell differentiation. Moreover, two TFs from the second cluster, FOS-like 2 (FOSL2) and early growth response 2 (EGR2), were identified as novel essential TFs that control NK cell maturation and function. Knocking down either of these two TFs significantly impacted NK cell differentiation. Finally, we constructed a genome-wide transcriptional regulatory network that provides a better understanding of the regulatory dynamics during NK cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.