Abstract

In this paper, we analyze the landscape of the true loss of neural networks with one hidden layer and ReLU, leaky ReLU, or quadratic activation. In all three cases, we provide a complete classification of the critical points in the case where the target function is affine and one-dimensional. In particular, we show that there exist no local maxima and clarify the structure of saddle points. Moreover, we prove that non-global local minima can only be caused by ‘dead’ ReLU neurons. In particular, they do not appear in the case of leaky ReLU or quadratic activation. Our approach is of a combinatorial nature and builds on a careful analysis of the different types of hidden neurons that can occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.